Obstacle avoidance and smooth trajectory control: neural areas highlighted during improved locomotor performance
نویسندگان
چکیده
Visual control of locomotion typically involves both detection of current egomotion as well as anticipation of impending changes in trajectory. To determine if there are distinct neural systems involved in these aspects of steering control we used a slalom paradigm, which required participants to steer around objects in a computer simulated environment using a joystick. In some trials the whole slalom layout was visible (steering "preview" trials) so planning of the trajectory around future waypoints was possible, whereas in other trials the slalom course was only revealed one object at a time (steering "near" trials) so that future planning was restricted. In order to control for any differences in the motor requirements and visual properties between "preview" and "near" trials, we also interleaved control trials which replayed a participants' previous steering trials, with the task being to mimic the observed steering. Behavioral and fMRI results confirmed previous findings of superior parietal lobe (SPL) recruitment during steering trials, with a more extensive parietal and sensorimotor network during steering "preview" compared to steering "near" trials. Correlational analysis of fMRI data with respect to individual behavioral performance revealed that there was increased activation in the SPL in participants who exhibited smoother steering performance. These findings indicate that there is a role for the SPL in encoding path defining targets or obstacles during forward locomotion, which also provides a potential neural underpinning to explain improved steering performance on an individual basis.
منابع مشابه
Automatic tuning of a behavior-based guidance algorithm for formation flight of quadrotors
This paper presents a tuned behavior-based guidance algorithm for formation flight of quadrotors. The behavior-based approach provides the basis for the simultaneous realization of different behaviors such as leader following and obstacle avoidance for a group of agents; in our case they are quadcopters. In this paper optimization techniques are utilized to tune the parameters of a behavior-bas...
متن کاملIntelligent Bug Algorithm (IBA): A Novel Strategy to Navigate Mobile Robots Autonomously
This research proposed an intelligent obstacle avoidance algorithm to navigate an autonomous mobile robot. The presented Intelligent Bug Algorithm (IBA) over performs and reaches the goal in relatively less time as compared to existing Bug algorithms. The improved algorithm offers a goal oriented strategy by following smooth and short trajectory. This has been achieved by continuously consideri...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملA Biologically Inspired Neural Netfor Trajectory Formation
for Trajectory Formation and Obstacle Avoidance. 1 R. Glasius A. Komoda S. Gielen Department of Medical Physics and Biophysics, University of Nijmegen, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands, Abstract A biologically inspired two-layered neural network for trajectory formation and obstacle avoidance is presented. The two topographically ordered neural maps consist of analo...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کامل